484. Find Permutation
By now, you are given asecret signatureconsisting of character 'D' and 'I'. 'D' represents a decreasing relationship between two numbers, 'I' represents an increasing relationship between two numbers. And oursecret signaturewas constructed by a special integer array, which contains uniquely all the different number from 1 to n (n is the length of the secret signature plus 1). For example, the secret signature "DI" can be constructed by array [2,1,3] or [3,1,2], but won't be constructed by array [3,2,4] or [2,1,3,4], which are both illegal constructing special string that can't represent the "DI"secret signature.
On the other hand, now your job is to find the lexicographically smallest permutation of [1, 2, ... n] could refer to the givensecret signaturein the input.
Example 1:
Input:
"I"
Output:
[1,2]
Explanation:
[1,2] is the only legal initial spectial string can construct secret signature "I", where the number 1 and 2 construct an increasing relationship.
Example 2:
Input:
"DI"
Output"
[2,1,3]
Explanation:
Both [2,1,3] and [3,1,2] can construct the secret signature "DI",
but since we want to find the one with the smallest lexicographical permutation, you need to output [2,1,3]
Note:
The input string will only contain the character 'D' and 'I'.
The length of input string is a positive integer and will not exceed 10,000
S1: DFS O(n!)
从最小的数字开始尝试直到得到可行解
//超时
class Solution {
public:
vector<int> findPermutation(string s) {
int n = s.size();
vector<int> result(n + 1);
for (int i = 1; i <= n + 1; ++i) {
result[0] = i;
if (dfs(s, 0, 1 << i, result)) return result;
}
return vector<int>{};
}
bool dfs(string s, int idx, int used, vector<int>& result) {
if (idx == s.size()) return true;
int pre = result[idx];
if (s[idx] == 'D') {
for (int i = 1; i < pre; ++i) {
if ((used & (1 << i)) == 0) {
result[idx + 1] = i;
if(dfs(s, idx + 1, used | (1 << i), result)) return true;
}
}
} else {
for (int i = pre + 1; i <= s.size() + 1; ++i) {
if ((used & (1 << i)) == 0) {
result[idx + 1] = i;
if (dfs(s, idx + 1, used | (1 << i), result)) return true;
}
}
}
return false;
}
};
S2: greedy O(n)
构造递增数列,若s全为‘I'则该数列即所求,若有D, 将D多对应得数列+1 反转即为所求
12345 : IDDI -> 14325:IDDI
123: DI -> 213: DI
vector<int> findPermutation(string s) {
int n = s.size();
vector<int> result(n + 1);
for (int i = 1; i <= n + 1; ++i) { //构造递增数列
result[i - 1] = i;
}
for (int i = 0; i < n; ++i) {
int j = i;
while (j < n && s[j] == 'D') j++;
if (j > i) {
reverse(result.begin() + i, result.begin() + j + 1);
i = j - 1;
}
}
return result;
}